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State Space Model for Autopilot Design of
Aerospace Vehicles

Executive Summary

Requirements for next generation guided weapons and other aerospace vehicles,
particularly with respect to their capability to engage high speed, highly agile targets and
achieve precision end-game trajectory, have prompted a revision of the way in which the
guidance and autopilot design is undertaken. This report considers the derivation of the
mathematical models for aerospace vehicles and missile autopilots in state space form.
The basic equations defining the airframe dynamics are non-linear, however, since the
non-linearities are “structured” (in the sense that the states are of quadratic form) a novel
approach of expressing this non-linear dynamics in state space form is given. This should
provide a useful way to implement the equations in a computer simulation program and
possibly for future application of non-linear analysis and synthesis techniques.

This report which is a follow on report to DSTO-TN-0449, also considers a locally
linearised state space model that lends itself to better known linear techniques of the
modern control theory. A coupled multi-input multi-output (MIMO) model is derived
suitable for both the application of the modern control techniques as well as the classical
time-domain and frequency domain techniques. The models developed are useful for
further research on precision optimum guidance and control. It is hoped that the model
will provide more accurate presentations of aerospace vehicles autopilot dynamics and
will be used for adaptive and integrated guidance & control of agile missiles and other
aerospace vehicles that do not necessarily have symmetric cruciform airframes.
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1. Introduction

Requirements for next generation guided weapons, particularly with respect to their
capability to engage high speed, highly agile targets and achieve precision end-game
trajectory, have prompted a revision of the way in which the guidance and autopilot design
are undertaken. Integrating the guidance and control function is a synthesis approach that is
being pursued as it allows the optimisation of the overall system performance. This approach
requires a more complete representation of the airframe dynamics and the guidance system.
The use of state space model allows the application of modern control techniques such as the
optimal adaptive control and parameter estimation techniques [10] to be utilised. In this report
we derive the autopilot model that will serve as a basis for an adaptive autopilot design and
allow further extension of this to integrated guidance and control system design.

Over the years a number of authors [1-3, 6-9] have considered modelling, analysis and design
of autopilots for atmospheric flight vehicles including guided missiles. In the majority of the
published work on autopilot analysis and design, locally linearised versions of the model with
decoupled airframe dynamics have been considered. This latter simplification arises out of the
assumption that the airframe and its mass distribution are symmetrical about the body axes,
and that the yaw, pitch and roll motion about the equilibrium state remain “small”. As a
result, many of the autopilot analysis and design techniques, considered in open literature,
use classical control approach, such as: single input/single output transfer-functions
characterisation of the system dynamics, Bode, Nyquist, root-locus and transient -response
analysis and synthesis techniques [5, 7]. These techniques are valid for a limited set of flight
regimes and their extension to cover a wider set of flight regimes and airframe configurations
requires autopilot gain and compensation network switching.

With the advent of fast processors it is now possible to take a more integrated approach to
autopilot design. Modern optimal control techniques allow the designer to consider autopilots
with high-order dynamics (large number of states) with multiple inputs/outputs and to
synthesise controllers such that the error between the demanded and the achieved output is
minimised. Moreover, with real-time mechanisation any changes in the airframe
aerodynamics can be identified (parameter estimation) and compensated for by adaptively
varying the optimum control gain matrix. This approach should lead to missile systems that
are able to execute high g-manoeuvres (required by modern guided weapons), adaptively
adjust control parameters (to cater for widely varying flight profiles) as well as account for
non-symmetric airframe and mass distributions. Typically, for a missile autopilot, the input is
the demanded control surface deflection and outputs are the achieved airframe (lateral)
accelerations and body rates measured about the body axes. Other input/output variables
(such as: the flight path angle and angle rate or the body angles) can be derived directly from
lateral accelerations and body rates.

This report considers the derivation of the mathematical model for a missile autopilot in state
space form. The basic equations defining the airframe dynamics are non-linear, however,
since the nonlinearities are “structured” (in the sense that the states are of quadratic form) a
novel approach of expressing this non-linear dynamics in state space form is given. This
should provide a useful way to implement the equations in a computer simulation program
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and possibly for future application of non-linear analysis and synthesis techniques. Detailed
consideration of the quadratic/bilinear type of dynamic systems is given in [4].

This report which is a follow on report from the previous report [1,2], also considers a locally
linearised state space model that lends itself to better known linear techniques of the modern
control theory. A coupled multi-input multi-output (MIMO) model is derived suitable for
both the application of the modern control techniques as well as the classical time-domain and
frequency domain techniques. For sake of clarity, Figure 2.1 is a symmetric cruciform missile,
however the models developed are valid for non axis-symmetric aerospace vehicles.
Tables A-1.1 to A-1.3 contain the various aerodynamic derivatives and coefficients.

2. State Space Aerodynamics Model

The airframe, actuation and sensor measurement equations have been derived in detail in
Appendix A in this section we give the main results that will be used for matrix based
computation of the state space model.

2.1 Nonlinear Airframe Model

Conventions and notations for vehicle body axes systems as well as the forces, moments and
other quantities are shown in Figure 2.1 and defined in Table 2.1.

Figure 2.1 Motion variable notations

The variables shown in Figure 2.1 are defined as:
m - mass of a vehicle.
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a - incidence in the pitch plane.

p - incidence in the yaw plane.

A - incidence plane angle.

o - total incidence, such that: tan a = tan o cos A, and tan = tan osin L.
T - thrust.

Table 2.1: Motion variables

Roll Pitch Yaw
Vehicle Body Axes System axis axis axis
Angular rates p q r
Component of vehicle velocity along each axis u (4 w
Component of aerodynamic forces acting on vehicle along X Y z
each axis
Moments acting on vehicle about each axis L M N
Moments of inertia about each axis Ly Iy I..
Products of each inertia I, I Ly,
Longitudinal and lateral accelerations ax ay a.
Euler angles ) 4 4
Gravity along each axis Qx Sy g
Vehicle thrust along the body axis T

Tail Control Configuration:
We shall use the following notation: § - aileron deflection; 7 - elevator deflection; ¢- rudder
deflection. Figure 2.2 defines the control surface convention. Here the control surfaces are

numbered as shown and the deflections (871,d5,03,0, ) are taken to be positive if clockwise,
looking outwards along the individual hinge axis. Thus, Aileron deflection:

&= %(51 +09+083+8,), if all four control surfaces are active; or &= %(51 +63), or
1
é= 5(52 + 6, ) if only two surfaces are active. Positive control defection (£) causes negative
1
roll. Elevator deflection: 7 = 5(51 — 03 ). Positive control deflection (7) causes negative pitch.

Rudder deflection: § = %(62 — 04 ). Positive control deflection ({) causes negative yaw.
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Figure 2.2 Control surfaces seen from the rear of a missile

Canard Control Configuration:
For a canard configuration, same convention will be used for control surface deflections;
however, it is noted that the force and moment coefficients will have opposite signs. Canard

control is generally not used for roll control.

Euler Equations of Motion

The six equations of motion for a body with six degrees of freedom may be written as [1-3]:

m(u+wg—vr)=X+T+g,m (2-1)
m(V+ur—wp)=Y +gym (2-2)
m(Ww-ugq+vp)=2Z+gym (2-3)
L= (lyy = 15)ar + 1y (2 =9 )= L (pa+ 1)+ 1y (rp—d) =L (2-4)
L= (15 = Lo P+ L (P2 =12 )= Ly (ar+ p)+ 1y, (pg—1)=M (2-5)
Lzt = (Lo = Ly )PA+ Ly (0% = p?) = 1y, (rp+G) + I (ar = p) =N (2-6)

d o
Here (-)= Fril is the derivative operator.

Based on the Euler equations above, the nonlinear (quadratic) airframe state space model is
given by (see equations A-1.1 to A-1.5):

9B [ro]dF)+ oo Julle o1 @)
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Where:
_1[11]
1] _ _ . .
gg =|——|= [u v w | pq r]T :is a 6x1 linear-state vector.
X
_5[12]
5g2]= -—|= [uq ur vp vr wp wq | p2 pg pr q2 qr r2]T :is a12x1 quadratic-
g
state VéCtOI‘.
ult!
ggl] =l -—|=[X+T Y Z | L M N]r :is 6x1 a vector function of control inputs, forces
1
=2
and moments.
9[1] =| -—- |= [gx gy 9, 0 O 0]r : is the 6x1 gravity (or disturbance) vector.
O3x1
[Co]l 1 [0sxe]
[FO ] =| === | === : is a 6x12 state-coefficient matrix.

_[03x6] | [A][Bo]

[1sxs] | [034]
[Go ] =| ——— | ——-— |:is a6x6 input-coefficient matrix.

I [0axa] | [Ao]™

I'xx _lxy — Iz

[A0]= —lyy 1y =1y, |:isa3x3 matrix.
__lzx -1y 1z
0 I,y =1y Iy, (Iyy |zz) =1y,
[BO]= =l _Iyz (Izz_lx)( 0 |xy I, : is a 3x6 matrix.
Ly (lXX—lyy) lyy =y =l 0
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0 0 0 10 -1
[CO]= 0 -1 0 0 1 O [:isa3x6matrix.
1 0 -100 O

Subscripts under [I] and [0] matrices denote the matrix dimensions. Generally, not all state
variables in the state equation are accessible or measurable. The vehicle angular rate
components (roll rate p, pitch rate g, and yaw rate r) and the acceleration components (a,, a,,
a.) are commonly available and can be measured using the IMU.

2.2 Body Acceleration Model

Equations for the vehicle actual body accelerations and body rates are derived in Appendix A
equations (A-1.6) to (A-1.11). These equations allow position offsets from c.g for observing the
body accelerations. The acceleration components at point O (where O is at a distance of d,, d,
and d. from the central point of gravity, c.g., along x-, y- and z-axis, respectively), may be
written as:

ax=u+qw—rv—dx(q2+r2)+dy(pq—r’)+dz(pr+q)

=X +T+0y—dy(q*+1?)+dy(pg—1)+d(pr+q) (2-8)

ay =V+ru— pw+dy( pq+|‘)—dy(p2+r2)+dz(qr— p)

=Y +gy+dy(pa+r)-dy(p?+r?)+d,(ar-p) (2-8)
a, =W+ pv—qu+dy(pr—d)+dy(ar+p)-d,(p°+9°)

=Z+g;, +dy(pr—g)+dy(ar+p)-d,(p®+q?) (2-9)

After some matrix manipulations, the body acceleration model may be written as (see
equations (A-1.6) to (A-1.11):

Xgl] =[3 ]1[31] + [KO]ZLZ] +['—o]9£1] {Mo]g ] (2-10)
Where:

X[ll] = [aX ay 8, ] T.isa3x1 body acceleration vector.
X[zl] = 5[21] = [p q rIr :is a 3x1 body rate vector

XE] = Iz[ll] | X[zl]JT :is a 6x1 output vector.
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100 O d, -dy
[Do ] =0 1 0 -d, O dy |:is a 3x6 accelerometer position “offset” matrix.
001 dy -dy O

0 00 -1 0 1 0 dy d, —dy 0 -—dy
[D1]= 0 10 0 -10 -dy, dy O 0 d, -dy|[:is a 3x12 accelerometer
-101 0 0 0 -d, 0 dy -d, dy O

position “offset’” matrix.

[036]
[Jo ] =l—————— : is a 6x6 linear-state output coefficient matrix.
[0sxs | 1]
[DyFo + D;
[KO ] = —————— :is a 6x12 quadratic-state output coefficient matrix.
[03.12]
[DoGo]
[L]=|---——- : is a 6x6 coefficient matrix.
[05x6]
[Do]
[Mo]=| === |: is a 6x6 output coefficient matrix.
[036]

Note: equation (2-10) represents the actual accelerations and body rates outputs; these have to
be measured using a body fixed IMU (accelerometers and gyros).

2.3 Accelerometer Dynamics Model

The dynamic model for the accelerometers is derived in Appendix A, equations (A-1.12) to
(A-1.17). A second order linear dynamics is assumed for the accelerometer model.

%zgl] = [Wo ] lLl] + [Wz]z?] + [Ws]!gl] +[w,] g[l] (2-11)
Where:

T
[
5[11] = |:axo axo a8y ayo 8y azo} :is a 6x1 accelerometer state vector.
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0 1 0 0 0 0
—w? -2fwy O 0 0 0
0 0 0 1 0 0 ) .. .
[W0]= 2 : is a 6x6 coefficient matrix
0 0 -wf -24yw, 0 0
0 0 0 0 0 1
0 0 0 0 ~0f -2¢,0, ]

containing accelerometer parameters.

0 0 O
w2 0 0
o 0 0. . : .
[VV ]= : is a 6x3 coefficient matrix containing accelerometer parameters.
Yo @) o
0 0 O
|0 0 &f]

[W2 ] = [Wl DoFp +W; Dl]: is a 6x12 coefficient matrix.
[\N3 ] = [Wl DoGo ]: is a 6x6 coefficient matrix.
[W4 ]: [\Nl Do ]: is a 6x6 coefficient matrix.

The accelerometer measurement model is given by (see equation (A-1.18)):

[1] [J ] El]+v IC}+v[(} +v[1]+v[1] (2-12)

—ds ~an
Where:

[1] [ax m Aym 8y ]T : is a 3x1 accelerometer measurement vector.

_[alb] = :\/Xb Vyp Vzb]T : is a 3x1 accelerometer bias error vector.

_[alj = :VX d Vvg Vg ]T :is a 3x1 accelerometer drift error vector.
_[als] = :VX s Vys Vz S]T :is a 3x1 accelerometer scale factor error vector.
_[alg = :VX n Vyn V2 n]T :is a 3x1 accelerometer noise error vector.
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100000
[3;]=/0 0 1 0 0 0]:isa3x6 matrix.
000010

2.4 Gyro Dynamics Model

The dynamic model for the gyros is derived in Appendix A, equations (A-1.19) to (A-1.21).
A second order linear dynamics is assumed for the gyro model.

o]k i ] o 213)

Where:
-

XLl] = [ Po P o Uy Yo Fo| :isa6x1 gyro state vector.

[0 1 0 0 0 0
~wf -2{p0, O 0 0 0
0 0 0 1 0 0 . . :
[W5]: 2 : is a 6x6 coefficient matrix
0 0 —wf -2{qog O 0
0 0 0 0 0 1
0 0 0 0 ~wf -2{ ;|

containing gyro parameters.

0 0 0
5 0 0
0 0 0]. . : o
[\N6 ] o &2 o : is a 6x3 coefficient matrix containing gyro parameters.
o 0 o
0 0 o

[VV7 ]= [06x3 | Wg ]: is a 6x6 coefficient matrix.

The gyro measurement model is given by (see equation (A-1.22)):

[1]—[J ] Ll]+vgt]) +v[1§ +v[gl] +\_/[glr]1 (2-14)
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Where:

[1] [p Om rm]T :is a 3x1 gyro measurement vector.

_[Jt]) =Vp, Vop Vrb]T :is a 3x1 gyro bias error vector.

_[glj =[Vpy Vag Vg ]T :is a 3x1 gyro drift error vector.

_[gls] =Vps Vgg Vrs ]T :is a 3x1 gyro scale factor error vector.

—[glr]1 =Vpn  Van vrn]T :is a 3x1 gyro noise error vector.
10 00 0O

[J2]= 0 01 0 0 Of:isa3x6b matrix.
000010

2.5 Actuation Servo Model

The dynamic model for the actuation system is derived in Appendix A, equations (A-1.23) to
(A-1.28). A second order linear dynamics is assumed for the gyro model.

This equation is of the form:

d 1 1

<ol o]+ oy Tl 2-15)
Where:

-
[1] [50 & Mo Mo Go $o| :isa 6x1 state vector.

u 41] =a;= [fi i S ]T :is a 3x1 control (servo actuator) input vector.

10
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0 1 0 0 0 0
~wf -2pwr O 0 0 0
Vol 0 0 ° ' 0 O |lisa6xs tuator coefficient
0l=1 o 0 % —24770),7 0 0 :1s a 6x6 servo actuator coetticien
0 0 0 0 0 1
o 000 -ef -2so]
matrix.
[0 0 0]
wf 0 0
O O 0 ) . .« . .
[V1] = 0 wg 0 :is a 6x3 servo input coefficient matrix.
n
0 0 O
2

If the actuator system noise is included in the model then the actual output from the actuator

servo may be written as:

= Pro L+ fJultls o1 2-16)

We may also write for the actuator output:

1 1
Xlg:i ] = [fo o go]T = [V2 ]Z([; ] (2-17)
Where:

[1] . . . ]T . i
\ S Ve,V & Voo Vi, Ve, Y ¢, ] 11sa 6x1 actuator servo noise error vector.

1
fv2]=| 0
0

o O O
o~ O
o O O

0 0
0 0 ]:1is a 3x6 matrix.
10

Note that:

JHZ[X() YO Z() ) m() N

= f(uv,w, p’q’r’u'v'w'fo"70’50):i&g1],_>'<g1],[\/2]§£1]) (2-18)

11
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12

2.6 Overall Nonlinear (Quadratic) Airframe Model including IMU

Equations (A-1.5), (A-1.17), (A-1.21) and (A-1.26) combine to give us an overall airframe, IMU
and actuator dynamic model; this equation is of the form:

o [r L [ 1 o D)+ Tl [a o [ 1] 219

Where:
A T I 71"
ggl] = 5[31] | 5&1] | 5%1] | 5%1] } :is a 24 x1 state vector.
osx6] | [O6x6] | [O6xe] | [O6xs]]
- | = == ] ===
[06x6] | Wol | [O6xe] | [O6xs]
[F]=| -—- | === | —== | ——- [:is a24x24 coefficient matrix.
Wsl | [oexe] | Ws] | [Ogxs]
- | == == ] ===
[06x6] | [O6x6] | [Oexs] | Vo] |

[F2]= [[Fo]T | [\Nz]T | [012X6] | [012X6 ]]T :is a 24x12 coefficient matrix.

[G1]= I-[GO]T | [\/\/3Ir | [06><6] | [06x6 ]]T : is a 24x6 coefficient matrix.

[GZ]: [[03)(6] | [03x6] | [03x6] | [\/l]T]r : is a 24x3 coefficient matrix.
[H 1]: [[I 6x6] | [\N4 ]T | [06x6] | [06x6 ]]T : is a 24x6 coefficient matrix.

[Hz]: [[Oexe] | [06x6] | [06x6] | [|6x6 ]]T : is a 24x6 coefficient matrix.

A block diagram of the decomposed version (derived by considering the sub-matrices) of the
overall model is given in Figure A-1.1. See appendix section 3.

2.7 The Measurement Model

Equation (2-12) and (2-14) may be combined to give the overall airframe and IMU (Gyros,
Accelerometers) measurement model (see equation (A-1.30)):

o= 6 1o ol 1 o) (2-20)
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Where:

-
T T

z[l]= Z[l] | z[l] =la a a Pm 0 ro| T:is a 6x1 IMU ro +

7 Ly Zg Xm Yim Zm m Yn m gy

accelerometer) measurement vector.

DY O L 7 bi
vl = yab | ygb =Vxy Vyo Vz, Vp, Vo, Vn :is a 6x1 IMU bias error vector.

b [ ] T -
Vgl =| vy | v =[vXd Vy, Vzg Vpy Vo vrd] :is a 6x1 IMU drift error vector.

0[BT I et
vgT=| Vg | Ve, =[vx, Vy, Vz, Vp, Vg, Vr,] :isa6x1IMU scale factor error

vector.

n

[ _| L2l ] _[ ]T.- -
VhT=| Vg | Vg =lVx, Vy, Vz, Vp, Vg, Vr,] :isa6x1IMU noiseerror vector.

O3x6 | J1 | Oz | Osxe
[‘]6]= -—— | === | === | —=—-|:is a 6x24 matrix.

O366 | O3 | J2 | Oz

3. Linearised State Space Airframe Model

The linearised state space model is derived in Appendix A, section 2 (equations (A-2.1) to

(A-2.9).Itis assumed that X,Y,Z,L, M and N are functions of u,v,w, p,q,r,U,\),Wf,n,g
and first order linearization of these nominal values uo, vo, wo, po, qo, 1o, So, 70 and g, are
considered. The linearised airframe model is given by:

The ‘small” perturbation model for the quadratic dynamic model of equation (A-1.29) may be
written as (see equation (A-2.5)):

%Algl] = [F1]A5L1] +[F2E4 +G1Eo Algl] +[G1E>] Al([)l] +[Gy Es]%ﬁlgl]

(3-1)
+G, ]Augl] HH, ]Azgln]

This equation will be referred to as the decomposed form (see Appendix A section 3)

13
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Where:
_[Fo E4 +Go Eo]_ _[GOEZ]_ _[GOES]_
[:/V;_E;;\;V;;o_] w3, ] [WsEs]
[F2E4 +GiEglq-———————- ; [GiE2] =| ———-[; [61E3] =| - -~
[06x6 ] [06x6] 066 ]
[O6xs] | | [0gx6] | | [06x6] |

Equation (3-1) may be written in a compact form as:

radl-[rs]adl+ [og)aull s vl 652
n
Where:
X Ry Ky Xy K
R
z, 2, Z Z, Z, Z
[Eo]= . v W P q " |:is a 6x6 aero-derivative matrix.
L L Ly Ly L L
My My My M, Mg M,
Ny Ny Ny Np Ng o Ny
% %
oo X
Ze Z, Z.|. o .
[E ]= g ¢ |:is a 6x3 control-derivative matrix.
ML L
¢ bk
Mg My Mg
[ Ne Ny Ng |

[E;]=[E 1V, ]: is a 6x6 matrix.

Xy Xy X4y 000
Yo Yy Yy 0 0 O
[E3]= Zg Zy  Zy 0 0 01.453 6x6 aero-derivative matrix.
ly Ly Ly 000
Mg My My 0 0 0
Ny Ny Ny 0 0 0

14
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© 0 0 0 wu O
n 0 0 O 0 u

0 pp 0 vy 0 O

0 1y 0 0 0 Vo

0 0 pg wg O 0

AR 0 0 g 0 wy 0 |:isa12x6 matrix of steady state values.

0 0 0 2p 0 O

0 0 0 do Po 0

0 0 0 1, 0 p

0 0 0 0 29 O

0 0 0 0 o do

0 0 0 0 0 25

[F3]= [l 24)(24]—[61 E3 | 024)(6 | 024)(6 | 024x6]: is a 24x24 coefficient matrix.

[F4]= [F1]+[F2 Es+G1Ep | Ooaxg | Ozaxe | Oo4xs ]: is a 24x24 coefficient matrix.
[F5 ]: [F3 ]_1 [F4]: is a 24x24 coefficient matrix.
[G3]= [F3 ]_1[62] :is a 24x3 coefficient matrix.

[H 3]= [F3 ]_l[H 2] :is a 24x3 coefficient matrix.

3.1 Linearised Measurement Model

Small perturbation model of the measurement model (see equation (A-1.30) may be written as:

2l =[ag] o+ alearlle sl auf)] 69)

A denotes small perturbation about nominal values

Finally, linearising the output equation (2-10) (see also equation (A-1.11)) gives us:
1 1
A1 -3, 1441 aul! (3-4)

Where:
[J7 ]= [J 0 +KoE 4] 1 is a 6x6 coefficient matrix.
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4. Conclusions

Both the non-linear and linearised autopilot models have been derived in this report. The
state-space model of a missile autopilot needs to be validated by comparing the model with
the other published results, and through both open and closed-loop systems simulation. The
non-linear dynamics model presented as structural quadratic algebraic system is novel and
will be used for developing non-linear control techniques suitable for missile systems high g-
manoeuvres and operating of a range of aerodynamics conditions. The models developed in
this report are useful for applications to precision optimum and adaptive guidance and
control. It is hoped that the higher order model with motion and inertial coupling will provide
more accurate representation of autopilot dynamics particularly for non axis-symmetric
airframes that could be used for adaptive and integrated guidance & control of missiles such
as air breathing supersonic and hypersonic vehicles.
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Appendix A:

A.l. Non-linear (Quadratic) Airframe and IMU Dynamics

Equations (2-1) to (2-3) represent the force equations of a generalised rigid body and describe
the translational motion of its centre of gravity (c.g) since the origin of the vehicle body axes is
assumed to be co-located with the body c.g. Equations (2-4) to (2-6) represent the moment
equations of a generalised rigid body and describe the rotational motion about the body axes
through its c.g. Separating the derivative terms and after some algebraic manipulation,
Equations (2-1) to (2-3) may be written in a vector form as:

ul o 0 0 1 0 —1[uq] [X+T]| [gy
%v:O—l 0 01 Ollurl|+ Y +| 9y
wlfl1 0 -1 00 O (v z g, (A-11)
vr
wWp
wq

Where:
g=X.yY. 7.2 7.7
m m m m

Note: that in the above equations, the states (u, v, w, p, q, ) appear as a quadratic form
expression.

In matrix notation equations (2-4) to (2-6) (section.2) may be written as:

p 2] L
[P0} a |-[Bo]) pa+| M
r p; N (A-1.2)
g
qr
r2

Here again, the states (p,q,r) appear as a quadratic form expression.
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Where:
I —lxy —lx
[AO]: —ly 1y =1y, |:isa3x3 matrix.
|~ Ix =1y, 1z
0 I —lyy lyz (Iyy—lzz) ~1y
Bol=| -1 —1y;  (lz=1x) © Ly l,x |:is a3x6 matrix.
Ly (|XX—|yy) lyy  —ly =l 0
Equation (A-1.2) may also be written as:
.[P p’ L
-1 -1
2| 9 [FlAoI[Bo]| pa | +[A0 ] | M
r T N (A-13)
q
qr
_r2_
Where:

2
(IWIZZ_IVZ) ('zz|xy+'y2'2><) ('yz|xy+'yy'ZX)
2 |xx|yz+|zx|x>) : a 3x3 matrix.

[Aol™ =

1
A Izzlxy"'lyzlzx Fxx 2z = ox

2
Iyzlxy+|yy|zx |xx|yz+|xy|zx (lxxlyy_lxy

2 2 2
A=(lxx|yy|zz_|xx|yz _lyylzx _lzzlxy _2|yz|zx|xy)-

The selection of the particular order of the terms in the ‘quadratic-state’ vectors

[uq ur vp vr wp wq]r of Equation (A-1.1) and [p2 pq pr q2qr r2]r of Equation (A-1.2) is made on
the basis of retaining lexicographic order of the variables. Combining Equations (A-1.1) and
(A-1.3), we obtain the full 6th order rigid body dynamics state equations as:

5[11] [Co] | [03u6] [12] [13xa] | [03xs] 9[11] 9

—_— ] —= | = _ | ——_——_— - - — —— |+ —_— — |+ ==

OB lose] 1 Aol ol | 2| | fosea] 1 L2 || |0

|

x

(A-1.4)
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Where:

0 0 0 10 -1
[C0]= 0 -1 0 0 1 O [:isa3x6matrix.
1 0 -100 O

5[11] = [u v WIr :is a 3x1 linear state vector.

5[21] = [p q rIr :is a 3x1 linear state vector.

X 2] = [uq ur vp vr wp Wq]T : is a 6x1 quadratic state vector.
ng] = [p2 pq pr q2 qr r2]T : is a 6x1 quadratic state vector.
g[l] [)Z +T Y Z ]r :is a 3x1 “force’ input vector.

ggl] = [L M N ]T :is a 3x1 ‘moment’ input vector.

g= [gX Oy gZ]r :is a 3x1 gravity vector.

Note: superscript [l is used to indicate that the state vector is linear; while superscript [2! is
used to indicate that the state vector is a quadratic/bilinear form.

Equation (A-1.4) may be written in a compact form as:

bR ]l oo Jultle g (A-15)
Where:

!
5[31]= —— =[u v w | pq r]T:isa6x1 linear-state vector.

!
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2]
522] =|——|= [uq ur vp vr wp wq | p2 pq pr q2 qr r2]r :isa12x1 quadratic-
e
state vector.
ol
ggl] =[-=|= [X +T Y Z | L M N]r :is 6x1 a vector function of control inputs, forces
ul
and moments.
9
9[1] =| —— |= [g x 9y 9, 00 0][ : is the 6x1 gravity (or disturbance) vector.
Qle
[Co]l 1 [0se]
[Fo ] =l-— | —————- : is a 6x12 state-coefficient matrix.

_[03x6] | [A][Bo]

[1axs] | [0ss]
[Go ] =| ——— | ——-—|:is a6x6 input-coefficient matrix.

] [0ax3] | [Ao]™

Subscripts under [I] and [0] matrices denote the matrix dimensions.

Al1l Body Acceleration Model

Generally, not all state variables in the state equation are accessible or measurable. The
common accessible measurement variables, in most missiles or airplanes, are the angular rate
components (roll rate p, pitch rate g, and yaw rate r) and the acceleration components (a, a,,
a). The acceleration components at point O (where O is at a distance of d,, d, and d. from the
central point of gravity, c.g., along x-, y- and z-axis, respectively), may be written as [11]:

aX:u+qw—rv—dX(q2+r2)+dy( pq—r)+d,(pr+q)

=)Z+f+gx—dx(q2+r2)+dy(pq—l‘)+dz(pr+q) (A-1.6)

ay =V+ru— pw+dy( pq+r')—dy(p2+r2)+dz(qr— p)
=V +gy +dy(pa+1)=dy(p® +r?)+d,(ar-p) (A-17)
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a, =i+ pv—qu+dy(pr—a)+dy(ar+p)—d,(p?+q?)
=Z+g, +dy(pr—g)+dy(ar+p)—d,(p®+9%) (A-1.8)

Or in matrix form:=>»

o [1] [ ]d Z[ll] [ ]1[12]

ay |=yH=[Dy]=| == |+[D1]]| -= (A-1.9)
aZ 1 0t lgl] ' ELZ]

Where:

X[ll] = [ax ay &, ] T:isa3X1 body acceleration vector.

100 O d, -—dy
[D0]= 010 -d, O dy |:is a 3x6 accelerometer “offset” matrix.
001 dy —-dy O

(0 00 -1 0 1 0 dy d, —dy 0 —dy
[D1]= 0 10 0 -10 -dy dy O 0 d, -dy|:isa 3x12 accelerometer
-101 0 0 0 -d, 0 dy -d, dy O

‘offset’ matrix.

Substituting from equation (A-1.5) for the %[] term in the above equation gives us:

{2 uft g
X[ll]=[DoFo+D1 —— |+[DoGo ]| - |+[Do]| -
x5 9[21] 0
>
X[ll] =[DoFo + Dllx[a?] +[DoGo ]![v,l] +[Dy ]9[1] (A-1.10)

Now, the expression for the body rates is:

X[zl] = ZLI] = [p q rIr :is a 3X1 body rate vector.
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Combining this with equation (A-1.10) gives us:

[1] 0, DoFy + D DG D
e M N i W W e R R B 1S
X[zl] 03z | 1] [05512] [05x6] [05x6 ]
>
yT=Bol T+ fko 1T+l Jul4fo o (A1)
Where:
_X[ll]
ygl] =| —— |:is a 6x1 output vector.
=
[ 12
[ 03]
N1 e —— : is a 6x6 linear-state output coefficient matrix.
303 | Taua]

[KO ]= ————————— : is a 6x12 quadratic-state output coefficient matrix.
[03.12]
[DOGO ]3x6
[Lo]=| -———-- : is a 6x6 coefficient matrix.
[056 ]
[DO ]3><6
[Mg]=| —--- |: is a 6x6 output coefficient matrix.
[036 ]

Note: equation (A-1.11) represents the actual accelerations and body rates outputs; these have
to be measured using a body fixed IMU (accelerometers and gyros).

Al.2 Accelerometer and Gyro Dynamics

Let us assume a second order dynamics for the accelerometers and gyros respectively; thus:

a 2

a0 _ 5 Dg 2\; a=X,Y,z (A-112)
a

a \S +2§aa)as+a)a)
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(A-1.13)

(w N ) : denote the sensor natural frequency and the damping factor respectively. Subscript ‘o’
denote output values, and subscripts (X Y, Z) and ( p.q, r) denote accelerations and body rates
measured by accelerometer and gyro orthogonal triads respectively.

Al1.3 A.1.3 Accelerometer Dynamics

In state space form equations for the accelerometer may be written as:

S
i 0 1 0 0
axo| |-@2 -2{4@y O 0

d | 2yo 0 0 0 1

dt ayo 0 0 -0y -2{ymy
a0 0 0 0 0
. 0 0 0 0
|dz0 |

Where: ago =%aao; a=Xx,Y,z

This equation is of the form:

%5&1] = [wi ] X+ oy Iyt

Where:
[0 1 0 0
—w? -2¢ywy O 0
0 0 0 1
wo = 2
0 0 —oy —20ywy
0 0 0 0
0 0 0 0

containing accelerometer parameters.

Q © o o oo

NN

o O O o

0
0
0
0
0 1
0]

o O o o

2
7 252“’2_ *

- 2Qyzwz_

- axo — -

° 0
a 2
X0 a)x

(A-1.15)

: is a 6x6 coefficient matrix
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e
XN
o o o

: is a 6x3 coefficient matrix containing accelerometer parameters.

S
<N
o o o o o

o O O O
o O
NN

-
[ ] [ ] [ ]
551] = [axo axo 8yp Aayo 8z Az | : is a 6x1 accelerometer state vector.

Substituting for XEl] from equation (A-1.10) into equation (A-1.15), we get:

d
—X
dt—
>

= o] B o 21+ s T+ v ] ol (A117)

1o Wwol x . [w1DgFo +W;D; ] x 21, [W1DoGoJu 1y [w1Dq] 9[1] (A-1.16)
; gl

Where:

W, ]=[W,DyFy +W; Dy ]: is a 6x12 coefficient matrix.
W3 ]=[W;DyGg]: is a 6x6 coefficient matrix.

W, ]=[wW1Dg]: is a 6x6 coefficient matrix.

The measurement model is given by:

[1] _ Y I I 1 P Y B Y
it =[3a g vy Ve i v (A-1.18)
Where
z[l] =|a a a ]T : is a 3x1 accelerometer measurement vector.
Z4 L Xm Ym Zm
(] _ T -
Va, =lx, Vy, Vz,| tisa 3x1 accelerometer bias error vector.
[1] _ ]T . .
v a Vx, Vyg Vzg) ‘182 3x1 accelerometer drift error vector.
\_/E] =[x, Vy, VY ]T :is a 3x1 accelerometer scale factor error vector.
S
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\_/[aln] =lx, Vy, vzn]T :is a 3x1 accelerometer noise error vector.
10 00 00

[J1]= 0 01 0 O O0f:isa3x6 matrix.
0000 10

Al4 Gyro Dynamics

Similarly, state space form equations for the gyros may be written as:

PO [0 1 0 0 0 0o | P° [0 0 0]
Po| |-@3 -2{p, O 0 0 0 Po| |02 0 O )
d| % 0 0 0 1 0 0 Go 0 0 O
—| o = . + q
dt| g, 0 0  -@f -2 O 0 g, | [0 @ of,
. 0 0 0 0 0 1 |0 o o
. 0 0 0 0 -—af —20qmq]|* 0 0
o] ~ “Lro] -
(A-1.19)
Where:
[ ] d )
ﬂo=aﬂ01 H=Dp.q,r
Equation (A-1.19) is of the form:
%&[3] = s ]t + s ] X (A-1.20)
>
d 1 1 1
El£]=[ws]l[5]+[06x3 | We]lg]
>
d [1 1 1
az[; T g 1M+ vy ] (A-1.21)
Where:

T

5L1]=[po Po Go Uy Tfo Fo| :isab6xl gyro state vector.
Wl yllop=[p q o
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0 1 0 0 0 0
—0p, —20po 0 0 0 0
0 0 0 1 0 0 . . :
[VV5]= 2 : is a 6x6 coefficient matrix
0 0 -0 -2{qoq O 0
0 0 0 0 0 1
0 0 0 0 -0 -2L0,

0 0 O
@5 0 0
o 0 0. . . .
[WG ] = 0 w2 0 :is a 6x3 coefficient matrix containing gyro parameters.
0 Oq 0
0 0

W ]=[0gxs | We]: is a 6x6 coefficient matrix.

The measurement model is given by:

[1] = [J ] x[l] + v[ ] + v[ ] + v[l] +y[1] (A-1.22)
~%  ~9d 9n
Where
ZLl] =P, 9m rm]T :is a 3x1 gyro measurement vector.
\_/[glb] =lVp, Vg, Vrb]T :is a 3x1 gyro bias error vector.
\_/[gld] =Vpy Vag Vi ]T :is a 3x1 gyro drift error vector.
\_/[Js] =lVp, Vg, vrs]T :is a 3x1 gyro scale factor error vector.
\_/[glr] =NVp, Vg, Vr, ]T :is a 3x1 gyro noise error vector.
1 00000
[J2]= 0 0 1 0 0 0]:isa3x6 matrix.
0000 10
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Al5 Actuation Servo Model

Let us assume a second order dynamics for the actuators, that is:

5\ @=6.1.¢

(wa o ) : denote the sensor natural frequency and the damping factor respectively; subscript
‘i’ denotes the servo (control) input value (servo demand), and subscripts (5 .4 ) denote roll,

pitch, and yaw outputs from the servo.

DSTO-TR-1990

(A-1.23)

In state space form equations for the actuation system model may be written as:

5,0 [0 1 0 0 0 0 5,0 i
So| |-wf -28swz O 0 0 0 So
d | o 0 0 0 1 0 0 Mo
— o |[= 2 o |+
dt| . 0 0 —w) —2pm, O 0 o
I
[ ] —a) —_— w [ ]
S0 ¢ e S0l
Where:
*
a=—a; a=§1n.¢

dt
This equation is of the form:

d

ot o]+ ol

Where:
-

&[31] = [50 & Mo Mo Go $o| :isa bx1 state vector.

u 41] =a;= [fi i G ]T : is a 3x1 control (servo actuator) input vector.

0 0
0 0
0 0 &
2 Ui
oy 0 '
0 0 i
0 (042'_
(A-1.24)
(A-1.25)
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0 1 0 0 0 0
- a): - 2; 50)5 0 0 0 0
Mol 0 0 ° ' 0 0 is a 6x6 tuator coefficient
ol= :is a 6x6 servo actuator coefficien
0 0 —wp —2¢pw, 0 0
0 0 0 0 0 1
0 0 0 0 —w} 240 |
matrix.
[0 0 0]
2
a)g 0 0
o 0 O
[\/1] = 2 : is a 6x3 servo input coefficient matrix.
0 w, O
o 0 O
2
0 0 (04

If the actuator system noise is included in the model then the actual output from the actuator
servo may be written as:

4 ) ] frJul o1 (A126)
We may also write for the actuator output:

XE] = [50 7o go]T = [V2 ]Zgl] (A-1.27)
Where:

[1]_ . , . JT i :
\ s .an v £ V,7n V,7n VCn v a1 is a 6x1 actuator servo noise error vector.

1
vo]=|0
0

o O O
o - O
o O O

00
0 0 [:1is a3x6 matrix.
10

Note that:

W =[%0) V() Z() L) M) N |
= f(uv,w, p'q’r’u'v'w'fo"70’40)=1Qg1],_>'<g1],[\/2]&[}]) (A-1.28)

A.1.6 Non-linear Airframe, IMU and Actuator Dynamic

We can now combine equations (A-1.5), (A-1.17), (A-1.21) and (A-1.26) to give us an overall
airframe, IMU and actuator dynamic model; this equation is of the Form:
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[ T [, ] o T )+ o Tl + [ g+ [ o ac1.29

Where:
[T T T T1"
ggl] = 5[31] | 551] | éLl] | 5%1] } :is a 24 x1 state vector.
T0sxs] | [06x6] | [O6x6] | [O6xs]]
-——= | === === ] ===
[Osx6] | Wol | [Oexe] | [06xe]
[F]=| -—- | ——== | === | ———:is a24x24 coefficient matrix.
Wsl | [oexe] | Ws] | [Opxs]
-—= | === === ] ===
[06x6] | [06x6] | [Osxe] 1 Vo] |

[|:2]:[[|:0]r | Wol' | [012x6] | [012x6]]T:isa24x12 coefficient matrix.

[G1]= I-[GO]T | [\N3Ir | [06x6] | [Oexe]]T : is a 24x6 coefficient matrix.

[GZ]: [[03)(6] | [03x6] | [03x6] | [\/1]T]T : is a 24x3 coefficient matrix.
[H 1]= [[I 6x6] | [\N4 ]T | [06x6] | [06x6 ]]T : is a 24x6 coefficient matrix.

[Ho]=M06x6] | [Osxe] | [0sxs] | [Vexs ]l : is a 24x6 coefficient matrix.

A block diagram of the decomposed version (derived by considering the sub-matrices) of the
overall model is given in Figure A-1.1. See appendix section 3.

Al.7 Measurement Model

Equations (A-1.18) and (A.1.22) may be combined to give the overall measurement model:

5;1] = [36 ]lgl] + \_/Ll] +!([11] + \_/Ll] + yLl] (A-1.30)
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Where:

-
T T

z[l]= Z[l] | Z[l] =la a a Pm 0 ro| T:is a 6x1 IMU ro +

7 Ly Zg Xpm Yim Zm m Yn 'm gy

accelerometer) measurement vector.

DIV O L 7 bi
vl = yab | ygb =Vxy Vv, Vz, Vp, Vo, Vn :is a 6x1 IMU bias error vector.

- T
T T
\_/Ell] = V[l] | V[l] ] = [v xg Vv T is a 6x1 IMU drift error vector.

~ay =gq ya Vg Vpg Vag Vrd]

—as —0s

- T
T T
\_/[Sl] = v[l] | v[l] } = [vXs Vy, Vg, Vp, Vg, Vi, ]T : is a 6x1 IMU scale factor error

vector.

—an n

I AV A ]7:i -
ViT=l v | Vg =Vx, Vy, Vz, Vp, Vg, Vr,] 1isa6x1IMUnoiseerrorvector.

O3x6 | J1 | Oz | Osxe
[‘]6]= -—— | === | === | —=—-|:is a 6x24 matrix.

O366 | O3 | J2 | Oz

A.2. Linearised Airframe, Actuation and IMU Dynamics

Equation (A1.30) defines the complete non-linear description of the full 6-DOF airframe
model. These equations contain quadratic terms in states and will be classed as the quadratic
dynamic model. This type of model is required when autopilot design is undertaken for a
missile executing high g- or high angle of attack manoeuvres, and (1, v, w, p, g, r) are not
small. A more detailed consideration of the algebraic structure of this type of dynamic
systems is given in [4].

A21 Linearised Aerodynamic Forces and Moments

Assuming that X , V, Z, L, M and N are functions of u,v,w, p,q,r,lll,\./,v.v.f,n,g and using
first order linearisation about the nominal values ug, vo, wo, po, qo, 1o, S0, 70 and g, we get:
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_ASZ‘FA:':_ )zu )zv )zw )zp )zq )zr A4u X§ )Zﬂ )Zg
Ay Yoo Yo Yu Yy Yo Yelav) Ve Y, Yol
= > > -~ > > > > > > (0]
ad] - aZ |\_|Zu 2y Zo Zy Zq Ze|aw| |Zp Z, Z; A
- AL Lk L Ly Ly Ly Lefdn| |Le L, L 4
AM My My My, M, Mg M [dg| |[Mg M, M[-7°
| AN ] [Ny Ny Ny Ny Ny N f[4ar] [Ng N, Ng
Xy Xy Xy 0 0 of4u]
Yo Yy Yy 0 0 0ff 4v
N Z, Zy Zj 0 0 0f4aw (A-2.1)
Ly Ly Ly 0 0 of4p
My, My My 0 0 0] 4q
Ny Ny Ny 0 0 0far]
This equation may be written as:
1 1 1 d [
A9[3 I [Eo] Al[g ] +[E1V2]AZL ] +[E3]EA1[3 ]
>
A!gl] =[Eo] Algl] +{E.] Alél] +[Es]%ﬁlgl] (A-2.2)
Where:

A(..): denotes ‘small’ deviations from the normal steady-state condition
(see Tables A-1.1 - A1-3):

Ko=2 o uv W, p.qr UV WE DG V=0 a= Uy W, p.Qr UV WE .G
oa oa

fa=a—z; a=u,v,w,p,q,r,U,\),Wﬁ,n,g;La=a—|'; a=u,v,w,p,q,r,0,\),vi/§,n,g
oa oa

Ma=ﬂ; a=u,V,W,p,q,r,U,\},Wf,ﬂ,g? Na=@; a=u,v,w,p,q,r,u,V,W§,ﬂ,§
oa oa

[E;]=[E 1V, ]: is a 6x6 matrix.

AT =0; Ag[l]:g

33



DSTO-TR-1990

Xy Xy Xy Xp Xq X
Yo Y Yo Yp Y5 Yy
[Eo]= Zu Ly Zw Zp Zq 4 : is a 6x6 aero-derivative matrix.
LoLoLoLp L L
My My My, M, My M,
Ny Ny Ny Ny Ng N
(Xe Xy X
e T Y%
[E1]= S : is a 6x3 control-derivative matrix.
Ll
Mg M, M,
| Ng Ny Ng |
Xy Xy Xy 0 0 0]
Yo Yy Yy 0 0 0
[E3]= Zyg Zy Zi 0 0 0]. 52 6x6 aero-derivative matrix.
Ly, Ly Ly 000
My My My 0 0 0
Ny Ny Ny 0 0 0

A.2.2 Linearisation of the Quadratic State Vector

It is easily verified the first order linearization of the quadratic state vector defined in section
21.:

;
T T T
x£2]=[5[12] | 5[22]} g ur v v owp owa | b2 pg proa? o f

may be written as:

axd?)=[E,] ax}] (A-2.3)
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Where:
[gp 0 0 0 'y O]
n 0 0 0 0 U
0 pp 0 vg O O
0 rp O 0 0 vp
0 0 p wg O O
[E.]= 0 0 g O wy O |:isa12x6 matrix of steady state values.
0 0 0 2p, O O
0 0 0 d p O
0 0 0 rpb 0 p
0 0 0 0 29 O
0 0 0 0 1 q
0 0 0 0 o0 21

T T
A5[31]=[A511] | Ag[zl] }T=[Au A Aw | Ap Aq Ar]T:isa6xllinearA-statevector.

A.2.3 Linearised Airframe, IMU, Actuator Model

The ‘small” perturbation model for the quadratic dynamic model of equation (A-1.29) may be
written as:

%Azgl] = [Fl]Aégl] + [Fz]Al[o,z] + [Gl]A![o,l] + [Gz]Augl] + [Hl]Ag[l] +[H 2]AZ[Sln]
(A-2.4)

Substituting for Aﬁgz] and Aggl] from equations (A-2.2) and (A-2.3), gives us:

%AZE] = [F1]A5[;1] +[F2E4 + Gy Eo]Al[a,l] +[G1E,] Alg] +[G Ea]%ﬁl[s,l]

(A-2.5)
+G, ]Aﬂgll] {H, ]Az[sln]
Where:

[[FoE4 +GoEp]] [[GoE,]] [[GoE3]]

W, E, +W3E] W3E,] WsEs]

A9[1]=9" [F2Eq +GiEg]q - ————--—- J[GiE,] =| ———-|;[61E5] =| ———-

[06xs ] [06xs ] [06x5 ]
[06xs ] i | [06xs] | | [06x6] |
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These above matrices are all of dimension 24X6. See also the block diagram Figure A-1.2.
Now, Equation (A-2.5)=>

%A5L1]=[F1]AKL1]+[[F2E4 +G1Ep] | [02axs] | [02ax6] | [GlEz]]Algl]

+[Gz]AHL,l]+[[GlE3] | [024x6] | [02ax6] | [024x6]]%4‘£[71] (A-2.6)

+[H, Avgln]

%[Fg]@% ~[Fa] axdt)+ [6,] ault! + [HZ]AK[sln] (A27)
%Aééﬂ = [Fol AR axd+ [F T [ ) aul [ [, ] vl (A28
%Aly] = [Fs] axd + [65] auld +[H; ] avll] (A2.9)
Where:

[F3]= [l 24)(24]—[61 E3 | 024)(6 | 024)(6 | 024)(6]: is a 24x24 coefficient matrix.

[Fal=[F1]+[F2E4 +G1Eg | Opse | O2axg | GiE2]:is a24x24 coefficient matrix.
[F5 ]= [F3 ]_1 [F4 ] . is a 24x24 coefficient matrix.

[G3]= [F3 ]_l[Gz] : is a 24x3 coefficient matrix.

[H 3]= [F3 ]_1[H 2] : is a 24x3 coefficient matrix.
Small perturbation model of the measurement model (see equation (A-1.30) may be written as:
4l -Poeladle afleall - 4l 4l (A-2.10)

A': denotes small perturbation about nominal values.
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Finally, linearising the output equation (A-1.11) gives us:

A1 g o) L]
4
2y =37 ] x4 o aut]

(A-2.11)

(A-2.12)

Where:
[J7 ]= [Jo +KoE4 ] . is a 6x6 coefficient matrix.
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A.3. Decomposed State Space Models

A3.1

Nonlinear Model:

Using the relationship established in the appendix section 1.4, we may write:

o
ol

)

1

A3.2

066 |

[06xs ]

fw, ]

[066]

Linearised Model:

[06xs ]

wo]

[06xs ]

[066 ]

[06xs ]

[06xs ]

fws ]

[06x6 ]

[06xs 1]

[06xs ]

[06xs ]

ol |

L T

ol

)

)

[Fol T [ [Go]] [[06xs ] 1exs ]| 066 ]
el L ps) o P! Al el | 1, B! M
06512 ] [06x6 ] [06xs ] [06xs ]| [06xs ] '
06212 ]] [06x6 1] | Vil | | [06x6 ], [Voxs ]}

Using the relationship established in the appendix section 1.4 and equations (A-2.2), (A-2.3) and (A-2.5), we may write:

ol
axl1]
i

]|

066 ]

[06xs ]

w7 ]

[06x6 ]

[06xs ]

[wo]

[06xs ]

[06xs ]

[06x6 ]

[06xs ]

fws]

[06xs ]

[6xs 1]

[06xs ]

[06x6 ]

]

axl!]

axl!]

ol |

o |

[[FoE4 +GoEg]]

H-———————— Q%l] +

[[GoE-]]

wsE,]

[06x6 ]

063 ]

[06x3]
4[61] I

[06x3]

| [0gx6] |

[[GoE3]]

wsEs]
@[11]+ e

[06x6 ]

[ V1]

| [06x6] |

iAx
dt —

.

(A3-2)
Block diagrams for the decomposed versions for the nonlinear and the linearised models are given in Figures A-1.1 and A-1.2 respectively

0661-dL-OLSA

06 ]

[06xs ]

[06x6 ]

[Vexs 1]

av [1]



Table A-1.1. Longitudinal (Roll) Aerodynamic Derivatives and Coefficients:

Derivatives Derivatives Normalised Coefficients
Symbol | Units Symbols Units Symbols Units
Xu Nm sec - - ( Xy ! QSX) m1 sec
Xy Nmlsec | Xg(=UX,) [N cxﬂ( X5 1QSx]) -
X Nmisec | X,(=UXy) [N Cyx, (=Xq/QSx) -
Xp N sec - - Cxp(=X /QSX) sec
Xq N sec - - CX (=Xq/QSX) sec

Xy N sec - - Cx, ( Xr/QSX) sec
X¢ N - - CX§(=X5/QSX) -
Xy N - - Cx, (= Xy /QSx) -
Xz N - - Cx, lEX ¢ 1Q8x) -
Xy Nm1 sec? - - Cxy (= Xyl QSX) m! sec?
Xy Nt sec? Xﬂ =UXV) N sec Cy (_ Xy /QSX) m! sec?
X Nmlsec? | Xg =UXW) N sec Cxy, ( Xy 1 QSx ) m! sec?
Ly N sec - - Ci, (: Ly / QSXCX) m! sec
Ly N sec - - Ci, (= Ly /QSXCX) m sec
Ly N sec - - o (= Ly /QSXCX) m! sec
Lp Nm sec - - C|p(=Lp/QSXcX) sec

Lq Nm sec - - C|q (= Lq /QSXCX) sec

Ly Nm sec - - ( L, / QSyc ) sec

Lg Nm - - C|5(:L /1 QSxcy) -
Ly Nm - - qﬂ( Ly / QSxcy ) -
Ls Nm - - c|4(= L;/stcx) -
Ly N sec? - - Ciy (= Ly / QSXCX) m! sec?
Ly N sec? Lsl= ULV) Nm sec Ci, (= Ly / QSxCx) m! sec?
Ly N sec? Lg (= ULW) Nmsec | Cy, (_ Ly, / QSXCX) m sec?

DSTO-TR-1990
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Table A-2.1. Lateral (Pitch) Aerodynamic Derivatives and Coefficients:

Derivatives Derivatives Normalised Coefficients
Symbol | Units Symbols Units Symbols Units
Yu Nm1 sec - - Cy, (=Yu / QSy) m! sec
Y, Nm'sec |Yg(=UY,) [N Cy,lEYs/Qs,) -
Yo Nmisec |Y,(=UY,) [N Cy, [EYa/Qsy) -
Yo N sec - - Cyp(—Yp/QSy) sec

Yq N sec - - C Yo (— Yq/QSy ) sec

Y, N sec - - Cy, (—Yr /1 QS y) sec

\5 N ] ) Cyg(—ch/QSy) )
Yn N - B Cy,,(=Yn/QSy) -
Y¢ N - B Cy;(=Y§/QSy) -
' Nm1 sec? - - Cy, (:Yu / QS y) m! sec?
Yy Nmtsec? |Y B (= uYy ) N sec Cy, (: Yy /QSy ) m sec?
Y Nm'lsec? | Y, (= Uy, N sec Cy, (— Yy ! QS y) m sec?
My N sec - - Cmu(—Mu/QSycy) m! sec
M, N sec - - Cmv(— MV/QSyCy) m! sec
M, N sec - - me(—MW/QSycy) m sec
M, Nm sec - - Cmp(—Mp/QSycy) sec

Mg Nm sec - - Cmq(—Mq/QSycy) sec

M, Nm sec - - Cmr(—Mr/QSycy) sec

Mg Nm - - Crmel=Mg 7QSycy) -
M, Nm - - Cm, (=M, 71QSycy) -
My | Nm - - Cm, (=M, 7QSycy) -
My N sec? - - Cm, (— My /QSycy) m sec?
My N sec? M’B-(=UMV) Nm sec Cmv(_ MV/QSycy) m! sec?
M, N sec? Md(=UMW) Nm sec me(—MW/QSycy) m! sec?




Table A-3.1. Lateral (Yaw) Aerodynamic Derivatives and Coefficients:

Derivatives Derivatives Normalised Coefficients
Symbol | Units Symbols Units Symbols Units
Z, Nm1 sec - - Cy, (= Z,/ QSZ) m! sec
z, Nm'sec | zg(=uz,) [N Cy,(=251Qs,) -
Zy Nm1 sec Za(= UZW) N C,, (= Z, ! QSZ) -
Z, N sec - - Czp(=Zp/QSZ) sec
Z, N sec - - CZq (— Zy/ QSZ) sec
Z N sec - - C,, (= Z, /QSZ) sec
Zg N - - C, l=2£1Qs,) -
Z, N - - C,,[=2,1Qs,) -
Z; N - - C, (=2, 10s,) -
Z Nm1 sec? - - Cy, (= Zyl QSZ) m! sec?
Z, Nm1 sec? Zﬂ (: UZ\;) N sec Cs, (_ Z,l QSZ) m! sec?
Zi Nmlsec? | Z,(= UZW) N sec Cz, (— Zy ! QSZ) m! sec?
Ny N sec - - Ch, (— N/ QSzCz) m! sec
Ny N sec - - Cn, (= Ny /QSzCz) m! sec
Ny N sec - - Ch, (— Ny / QSzCz) m! sec
Np Nm sec - - Cnp (= Np/ QSZCZ) sec
Ngq Nm sec - - qu (— Ng / QSZCZ) sec
N, Nm sec - - Ch, (: N, /QSZCZ) sec
Ng Nm - - Cn, (= Ng7Qs,c,) -
N, Nm - - Cn, (=N, 7Qs,c,) -
N, Nm - - Cn, (=N, 7Qs,c,) -

u N sec? - - Chn, (= N/ QSZCZ) m! sec?
Ny N sec? N,B(= UNy Nmsec | Cp, (= Ny / QSzCz) m sec?
Ny N sec? Nd(= ULW) Nmsec | Cp. (_ Ny / QSzCz) m! sec?
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Figure A-1.1 Nonlinear (Quadratic) Airframe Model including Actuator and IMU
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1
ol
[1] g[l] +ﬁ[1] +g[1] +4[1]
4x3 ap aq E an
Airframe
IMU
[1]
Axy Al
Actuator J2 =

—E Wl Ali] ol Al
— 0y —9d ~—9s —On

Figure A-1.2 Linearised Airframe Model Including Actuator
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